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Abstract

A aev method for the design of shock-free supercritical airfoils,

wings, and three-dimensional configurations is described. Rasulcs illus-

trating this procedure iu two arad three dimensions are given. They

I include modifications to part of the upper surface of an NACA 64.1410 air-

'	 foil that will maintain shock-free flow over a range of Mach numbers for

a fixed lift coefficient, and the modifications required on part of the

upper surface of a swept wing with an NACA 64A410 root sectioe tc achieve

shock-free flow. While the results are given for inviscid floor, the same

I
procedures can be employed iteratively with a boundary Myer calculation

in order to achieve shock-free viscous designs. With a shock-free pressure

field the boundary layer calculation will be reliable and not complicated

by the difficulties of sho,-'..-Nava boundary-layer interaction.
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INTRODUCTION

Well-known requirements for increased efficiency, and in the case of

aircraft, productivity, have forced the operating conditions of coepras-

sors. turbines, propellers, wing sections, and aircraft into the transonic

regime. Unfortunately, once local regions of supersonic flow occur, shock

waves are likely Ath the attendant wave drag, and boundary layer separa-

tion, losses. In the aid-fifties, Morawetz 1 proved that shock-tree, two-

dimensional, irrotatioLAU, near .sonic flows are mathematically isolated.

In other wards, any small changes in the flow or boundary conditions that

provide a shock-frae flow will lead to the formation. of t shock wave. Thus

Morawetz's theorem stated that the shock-free inviscid flow solutions, if

and when they existed, were isolated by neighboring solutions that contain

shock wolves. Recently this result has been Qztannded to three dimensions

by 'Cook. 
Z

ook. Z Fortunately, it was recognized that such flows mould have prac-

`;	 tical significance if, as seecaed likaly, the shock wavas that occurred in

neighboring flows were very weak. Wind tunnel research by R. T. Whiteerab3

at the NASA, Langley Research Center and by H. H. Pearcey 4 at the 'National

Physical Laboratory (U.K.) led to the development of practical "shock-free"

airfoil sections. Subsequent ans.lytical studies by Garabedian and Korn,5

vieuwland, 6 Boerstoel,
7
 and Sobieczky$ established theoretical design

procedures for cwu-dimensional inviscid flows. More recently, the develop-

ment of sophisticated numerical codes for the analysis of transonic flow

:'telds has led to the design of both airfoils ana wings by numerical

optimization. 9110 The practical success of the above efforts, as documented

by the recent ZUSA Conference on Advanced Technology Research, 
il 

has been

substantial. Further progress, as reportemd here, seems iikely. The senior

author recognized that the procedure he was using in the hodograph plane



aI. q	 implied an analogous procedure in the physical plans, and further, that

this procedure did not seem to bw restricted :o two-dimensional flow. 12.13

This paper reports the su--tess we have had to date is using this idea to

provide shock-free designs in two and three dimensions.

The design procedure invoked here is, in principle, a simple one.

While there is no guarantee that a shock-free flow will neceuscrily rerAlt

from tha procedure, our experience in two-dimensions has been that if the

hodograph method will work for specified flow and airfoil parameters, then

the procedure outlined here rill work, too. Also, it provides neighboring

shock-free airfoil shapes for fixed lift coefficient with varying Mach

aumbor. s and varying lift coefficient for fixed :each numbers, as well as

providing a mu?tiplicity of closely related shapes that are shock-free at

0	 fixed lift coaff icient and Mach number. This wealth of shock-free

ewo--dimensional designs is of no great surprise; it is, then, not surpris-

ing that they are found with -4111-1 computational. effort. Two-dimensional

inviscid flow potential airfoil designs require less than a -inute nf

CTM 175 CPU time and only a few seconds of CDC 7600 CPU time.

For three-dimensional flows our results are less extensive. Also,

while it is clear that the procedure we use rests on a sound mathesm tical

foundation in two dimensions, this may not be the case in three dimensions.

Indeed, for three-dimensional (that is non-planar and non-axisymmetric)

floss we are probably solving an ill-posed, boundary value problem. The

Ifact that shock-free flows are obtained in the cases studied here are a

t' consequence of the pseudo-analytic character of the initial data and the
i

particular numerical technique ussd to calculate the flow in the hyperbolic

region.*

*The authors are indebted to Professor A. Jameson of the Courant Institute
for alerting them to this difficulty.



We have demonstrated the ability to modify three-dimensional Wings

so that, within the context of the numarical algorithm used, shock-free

•	 flow are obtained. We have wt yet demonstrated an analogous wealth of

shock-free flows in the three-dimensional case, but sae no reason to

believe that this situation is different there. The practical consequences

of this waalth should prove to be of interest to the aircraft industry- 14

DESIGN PROCEDURE

The procedure we use to find shock-free designs assumes that a reliable

znmarical code is available for computing the flow past a given configuration,

such as that sketched in Figure 1. Such codas are available for two- and

three-41mansional inviscid flows. When they are coupled with a reliable

boundary layer coda, the design procedure outlined here can be used to

calculate shock-free viscous flow designs. While this would require some

modest iteration, it is certainly possible, both is practice and in prin-

cipla. With the axistenca of a reliable analysis algorithm presumed, we

modify this algorithm so that Unca the flow becomes hyperbolic we altar the

basic equations so that they revert to elliptic behavior. This may be dens

in a number of ways, but it should be done in a way that it conserves nsv,

but fictitious, "mass" and "momentum" fluxes to a satisfactory degree of

accuracy. We may, for exempla, change the density's dependence from the

usual one to one that returns the equation to elliptic form. We might.

suppose, for the purpose of illustration, that once the equations became

parabolic, i.e., sonic, on some surface then at higher velocities the

density will be maintained at its sonic value, giving elliptic equations.

We use a numerical algorithm to compute this fictitious flow past a con-

figuration of interest, chosen perhaps on the basis of previous design



4uperiance. Because the equations era elliptic this will result in a

discretited, pseudo-analytic, description of the velocity, density, and

pressure fields on the embedded parabolic surfaces, and this description

will be consistent with the correct governing equations. This initial

data on this parabolic surfaces is than used to calculate, the correct flow

field inside such surfaces. This new flow field maT, or may not, contain

shock waves. This depends on the choice of the fictitious equations, or

perhaps better, fictitious gas, used inside the parabolic surfaces. This

new flow will define a stress surface that is tangent to, and has the same

curvature as, the stream surface at the intersection of the sonic surface

and the original body. Inside this surface a new body shape is defined by

j.	 the stream surface of the saw, but now real, flow.

Hera, of course, we must also address the question of whether or not

this initial value problem is wall posed. In two dimensions there is ro

I"

1.	
difficulty because either of the spatial coordinates may be designated as

the tjme-like variable. This is not the case in three dimensions where
I

only the apatisl coordinate aligned with the flow is time-like. Because

shack-free flows are revnrslbla, the domains of dependence and influence

may be interchanged. But neither the normal (nor the binormal) to the

stream direction can be considered time-like in the theas-dimensional

initial value problem. Thus, it may be ill-posed because data are given

on surfaces that are not in the usual domain of dependence. If 3o, any

computational algorithm will be unstable for the three-dimensional problem.

Further, while such computations can be stabilized by artificial means, the

i•	 results must be considered suspect until they are verified by ar tadependent

computation. It is this fact that has wade us stress that a reliable

analysis algorithm should be the basis for the design computations. For



two-dlaensioaal (planar and axisymmetric) designs this difficulty does not

occur because the lateral coordinate can be considered to be the time-like

direction. A simplistic analysis of model problems indicates that varia-

tions in the spanwise direction that are on a scale that is small compared

to the nominal axial (flog direction) distance may amplify; thus the

success of the numer ical allgorithm here may depend upon its natural filter-

ing of such disturbances. This is not the first time ill-posed problems

have been solved to obtain results of engineering interest; see, for

example, Ref. 15, pp. 448-472.

Fictitious Gas

As mantioued above, modifications are made to the basic equations to

retain their elliptic behavior once the flow has accelerated to sonic speed

and a parabolic surface, with the needed initial d—s ta, has been generated.

The possible modifications are manifold. We limit our discussion to those

we have used to obtain the results reported here.

For two-dimensional flows we have used Jameson's
16,17

 circle-plane

algorithm for the full potential equation. Thus, in the analysis made, we

are solving

{paxIx + (PO T z . o
	

(la)

•rri;.h

p/p. (1. + Y- 1 M2(1 - ^^ - ^Z)]1!Y-1
	

(lb)

where 0 is the velocity potential and p the density. If we limit our

consideration to fictitious gases for which the density is a function of
1



•t

I
the square of the velocity,	 ( 2	 2	 2 2	 2

q	 tyr viZ, • Q	 Q (Q ) r where 	 U [4 x + 0 s ] r

then gas lava of the form

(a* / q ) P r 	 P < 1,	 for	 q > a*	(lc)

will insure elliptic behavior; P - 1 gives parabolic behavior and the

fictitious and real gases have the same value of (do /dq) * . An alternative

choice, and the one we hava used most extensively here, is P - 0; in

this case Equation (la) becomes Laplace's equation. When the flow would

normally be hyperbolic we now solve Equation (la) with the density-

7alocit9 relationship of Equation (lc). A fictitious mass flow, which

matches the real mass flux at the sonic surface, is thereby conserved and

the velocity field remains irrotational.

For three-dimeneior_±?.1 flows we have used u a SM-111us, yeller, Frick

algorithm, 1a as implemented by Mason at al. 19 This is a smell perturba-

tion calculation and we adopt the classical conservative formulation hero.

:hus we solve, in an equivalent form, the system

-2 (Y+1)(u2}x+vy+wz-0

uy -vx -0	 (2)

U  - wx 0,

where the velocity vector is 1 . - a* [ (I + u)i + vi + wk].

A simple modification (2) is to replace (u 2 } x by -sgn(u){u2 }Y

for all u. This s-*stem is elliptic except on the sonic surface where



u - 4. We may think of the first of Equations ( 2) as being the consequence

of the small. perturbA tion ezpansiva for the dentity, viz.,

^- 1 - -u -Y 1- u2 	 (3)

whereas the fictitious equation, with u replaced by -Jul for u > 0,

results from

-P_ - I - _11 X+ 3 u2 ;	 (4)
P*

this fictitious gas has the same value for (do / du) * as the real gas,

Equation (3). For three-dinensional design studies, then, we solve Equa-

tions (2) with (u2 } a replaced by -sgu(u)(u 2 } x ; this corresponds to

Lsing tha densities given by Equations (3) and (4) for u < 0 and u > 0

respectively.

VCalculation of the Hyperbolic Flow Field

As described above, we calculate the flow past a body using the correct

equations when the flcw is subsonic and a modified, incorrect, set of equa-

tions when the flow is supersonic. This calculation serves to define sonic

surfaces on which the flow field calculation is switched fro g; the correct

equations to the modified ones. Outside this surface, presuming the

trailing edge of the wing is subsonic, the solution satisfies the correct

equations and the potential at infinity has the correct value for the

circulation. If infinity in the physical plane is not mapped to a finite

part of the computational plane, then there is, in principle, a reed zo

correct the doublet and nonlinear contributions; in practice, these con-

a



tributions are small and changan in than negligible. Thus ch ,4 flow in the

elliptic, subsonic, domains is fixed and known, as is the initial data we

need on the parabolic surface.

For two-dimausioaal flows the calculation of the correct hyp•arbolic

behavior is carried out using the method of characteristics. This :s done

in a hodograph-like working plans in which the characteristics are

orthogonal straight lines. Zf we trlca T - 9 + v and n - d - v whore

A is the flow deflection angle. and v the Prandtl-Mayer turning angle,

than the velocity potential and stream function satisfy

K(-n)*^

m n ^ -K(-4 2 1),n

or equivalently,

^A I	 W	 l

dO ^,n-coast

where the t signs refer to E,n - coast., respectively. Here

KW - K(v (q) l - ( IM 
2  
(q) - 11 1 1/2 

p (0) /a ( q ) .

Values for the velocity potential on the parabolic line, z - z*(x), and

the shape of this line are used along ,rith the usual relatioas between the

spatial coordinates and ^b and * to fine ^ on the sonic line. 'phis

initial data is then integrated using Equations (5) to determine the locus

y(x,z) - 0 which passes through the irtersec:.iou of the soric line with

the body surface. The values of z for which # (x,z) . 0 determine the

(5)
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new body shape. This shape will have the same slope, and at least theo-

•	 retically, the same curvature, as the original body at the sonic points.

Thin follows f=om the observation that flow quantities are not changed at

the sonic line; thus the streamwise momentum and normal pressure gradient

are unchanged. Consequently tr local flow curvature gust be the same.

For three-dimensional flows the calculation of the hyperbolic flow

field is carried out by a procedure that marches inward from the sonic

surface by successi'^ . e surfaces of constant density ( isopycaics) for the

full potential equation, or constant axial flow speed, u, for the small

perturbation equation. We limit our discussion to the :small perturbation

equations, as all the results reported here derive from them. Preliminary

results using the full potential equation have been obtained by one of the

authors (N. J. Yu).

We may either write the Equatious (2) in the appropriately scaled

forth or work with them directly, which we will do here.

We are given an isotach surface z*(x,y), as shorn in Figure 2, on

which we know u - u* - coast., w - w*(x,y), and v - v*(x,y). We use

the data on th-s surface, and the surface shape, to calculate

z*x , z*y , wx, k7, x, uj.	 (6)

Because this data satisfies Equations (2) we can verify that

V* - z*w* - z*w*
x	 x y	 y x

which can be used, if needed, to check the consistency of the initial data.

The values giver. in Equation (6) can now be used to calculate the z



derivatit,Ls of u, w, v on z*(x,y), where u(x,y,z *) - const., by

using

u - (Z*^* - z * -,, " - w* ] /J
z	 7 x	 x y	 x

wz - ((Y + 1)u*zx x - z*wy + ^]/J
	

(7)

vz - ((Y + 1)u*z**v*z - w* - z^]/J

where J, the Jacobian, a (u, v, w) /a (_, y, z) , is

J - (Y + 1)u*z* 2 - z*y2

When the Jacobian, which is initially negative, vanishes we can no longer

compute the z derivatives; rhis corresponds to the subsequent formation

of multi-valued solutions, i.e., limit surfaces. If J - 0 occurs before

the calculations pro	 k suitable stream surface defined by w(x,y,0),

v(x,7,0), than thfty must be rejected.

With tua first of Equations (7) inverted to give (dz/du) * , we take a

set increscent in u, 4u, to form a new 'sotach surface z*(x,y) + 4z*(x,y) .

This new :sh.-upe, along with the mean value of u between the two surfaces

I
and the ssecnd and third of Equations (7), provides the new values,

w*(z,y) + Gw*(s,y), v*(a,y) + Av*(a,y), of w* and v* on the next

isotach. Thesa values and the shape of the subsequent isotach are then
i

converted to continuous functions by one-dimensional cubic splines in the

x and y coordinates. This "onion-peel"-like process is then continued

until z - 0, unless a limit surface intervenes. In the latter event the
t

solution must be rejected. A more detailed discussion of th:.s procedure

E	 is given in lef. . 20.
i

C	 '



derivatives of u, w, v on Z*(x.y), where u(x.y,z *) - const., by

.II

► , s us ins

u - ( Z* lr* - z*vW - w* J /J
z	 7 x	 x 7	 x

v z - ((Y + I)U*Z*V* - Z*V*y + v*J/J	 k/)

7 - ( (Y + I) u* z*XV*x - W* Z**V* I / J

where J. tha JacobiZn, )(u,v,w)/3(x,7,z), is

'1

J - (Y + l)u*zX - Z* 2 - 1.

When the Jacobian, which is initially negative, vanishes we can no longer

compute the z d- - 4.vatives; this corresponds to the subsequent formation

of multi-valuer anlutions, i.e., limit surfaces. Lf J - 0 occurs before

the s.&,tcu:dtions produce a suitable scream surface def fined by w(x,;7,0)

•r(s,7,0), then they must be rejected.

With the first of Equations (7) laver tad to give (dz/du) * , we take a

set Increment In u, Au, to form a new isotach surface z* (x,7) + %z* (x,;r) .

This aaw shapL, along with the mean value or u between the two surfaces

and the second and third of Equations (7), provides the new values,

'+* (x, 7) + Cw* (x, y) , v* (x, 7) + Ov* (x, 7) , of w* and .r* on the next

isotach. These values and the shape of the subsequent isotach are then

zonverted to continuous `unctions by one-dimensional cubic splines in the

x and 7 coordinates. This "onion-peel"-i.ike ?rocess is then continued

until z - 0, unless a limit sur=ace intervenes. In the latter event the

solution must be rejected. A more detailed discussion of this procedure

Is given in Ref. 20.
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We have explored, rath,.r extensively, some of the modifications that

can be made to an existing airfoil, namely an NACA 64A410 airfoil, to

obtain shock- tree flow. We will call this the baseline airfoil, as the

airfoil shapes we generate are identical with this airfoil over that por-

tior wetted by subsonic flow; we need only modify the airfoil over a

Iiaited portion of its upper surface to obtain shock -free flows. Further,

this modification is not unique for fixed flight conditions; rather, if

one such shape exists, there will be an infinite family of modifications

of the baseline airfoil that will produce shock-free flow.

With a baseline airfoil selected, here mainly For illustrative pur-

poses, we then pick a set of flight conditions for which we wish to find a

modification of the airfoil ahape that will result in shock- free flow. We

choose M= - 0.72 and a, the angle of attack, 0.4 DEG. At these condi-

tions inviscid flow calculations for the NACA 64A410 baseline airfoil give

a C^ of 0.78 and a CD of 0.0064. The design procedure discussed

above results in an airfoil that is 9.3% thick and has a lift coefficient

of 0.703. The original and the design pressure coefficient, sonic lines,

and body shapes are compareu in Figure 3a; these results, and all other

"analysis" results were computed using the numerical algorithm of Ref. 16.

Figure 3b compares the pressure coefficients and sonic lines determined by

the design procedure with those computed for the design airfoil shape.

With this shock--free design established at M - 0.12. and with CL -

0.70, we now wish to determine the families of shapes that provide shock-

free flow for fixed lift coefficient as the Mach uumber varies, and fixed

Mach number as the lift coefficient varies. This we have done with P - 0,



that is, with a constant density fictitious gas (at the critical value).

We hare then explored other shapes that will produce the same lift eoef f i-

cient, 0.73, at a fixrkd Mach number, for three different Mach aum',ers,

by taking P to be -0.5, 0.5, and 1.0. also, tor P - 0 we have

determined the max ,.== t'tch number for which the design procedure will

produce a ehock-free airfoil, as a function of lift coefficient. This

Mzeh number is nearly a linear funett;n of lift coefficient at larger lift

coefficients. The slope of this variation is consistent with that given by

Boerstoel.
21
 Prallmi_ nay studies &J -.o indicate that for a fixed lift

coefficient of 0.6-0.7, an O.lx increase La the maximum Mach aum6er

requires about an 0.2z reduction in the thickness for shock-free flow,

when the nominal thickness is about 1GS. This result is less optimistic 	 }

than the envelope of the hodograph designs given by Boarstoel,
21 wtio found	 +

that only an 0.11 reduction was required. In our study the generic

family of th:. airfoii is invariant; we have not yet examined the modifica-

tions required when the baseline airfoil is near the envelope of hodograph

1.	 designs. Positive values of P provide less airfoil thickness reduction,

as the fictitious and real gas densities are more nearly the same. The

range of our airfoil studies is depicted in Figure 4, with shock-frae

airfoils being determined for the points indicated. also shown. in Figure

4 is the maximum Mach number for which a design was found as a function cf

+	 lift coefficient for P 	 0.

The accuracy of the design pr.,eodure was studied at a number of design

points by comparing the design's pressure distribution and sonic line shape

with those obtained using tae unmodified numerical algorithm to analyze the

desig-- airfoil shaps. Typical results are shown in Figure 5. The sonic

line shape and initial data on the sonic line are determined in the circle-



-1,+-

plane; they then area mapped back to the physical plane. The method of

characteristics in the hodograph variables is used to compute the design

pressure coefficient corresponding to the calculated airfoil surface shape.

The agreement, as shove, is excellent. For designs that approach the Mach

m=bar at which a limit line first penetrates the surface special care must

be taken with the analysis code in order to obtain a converged solution.

These designs have very rapid expansions immediately following the sonic

line. Indeed, as Boarstoal21 has noted,, the analysis code used with an

optimization scheme will not produce designs of this character.

The shock-free airfo{1 shapes that are obtained for fixed C L and P,

fixed M. and P, and fixed M. and CL at various P's; are shown in

Figures 6-8. One can overlay the results for fixed CL and find quite

similar airfoil shapes that are shock-free over a range of Mach numbers.

Because modifications to the baseline airfoil are requirrd only over a

limited portion of the upper surface, and a family of specified changes to

the airfoil curvature is known for each set of flight conditions, a closely

relatad family of shock-free airfoil shapes can be generated. Thus the

minor modifications, to a limited portion of a wing surface, needed to

produce shock-free flow over a practi(:al range of flight conditions can

easily be determined.

THE-D MENS ZONAL RESULTS

Our first design results using the method described above were for two-

dimensional, small perturbation flow past a parabolic arc airfoil. Conse-

quently, we initiated our three-dimensional studies with a rectangular,

unswept wing with an aspect ratio of six and a parabolic arc airfoil. We

utilized the small perturbation approximation, Equations (2), and a parabolic



thickness distributica; the airfoil was taken to be 6Z thick at the cantor

+ ^1	 plans. The flow was calculated using the algorithm of Ref. 19, modified to
r'

return the equations to elliptic behavior as described earlier. The initial

data on the embedded sonic surface was then used to compute the correct flow

in the supersonic domain using the "onicn pool" algorithm of t1af. 20. This

defines new wing surface slopes. The flog past this shock-free design was

then analyzed, using the unmodified numerical algorithm. Figure 9 compares

the pressure distributions on the original and design wing, at various

lateral positions, for M. - 0.87. Also shown are the cross sections of the

sonic surface at the same lateral stations. The only essential differences

in the pressure occur in the supersonic domain, which is consistent with the

design process. The modifications made to the wing slope, shown in Figure

	

i.	
10 for several lateral stations, have eliminated the shock wave.	

I 
i

A subsequent, more realistic, calculation was made for the planform

sketched in Figure 11. The wing section chosen war _.n NACA 64A410 pro-

file at the cantor section and an elliptic thickness distribution. The

leading edge sweep was taken to be 30 DEC, the trailing edge 15 DEC and

the span to chord ratio five. The sonic surface is also depicted in Figure

U. Figure 12 compares the pressure corff iciants on the upper surface of

the original wing and the wing designed to be shock free. While the reduc-

tion in drag for this wing is small compared to the induced drag, it is

clear that the wing modifications bsys essentially eliminated the shock

waves, and, consequently, the wave drag. More importantly, shock wave

induced boundar9 layer separation is avoided.

1. 
We pause at this point to stress that the above comparison is obtained

by computing the flow past the original wing and the design wing, using the

same numerical algorithm. The process that leads to the new wing shape



also provites the pressure or the wing. Because this pr^ssure, " the new

:asign shape, result from a problem that is presumably ill posed, the

results were cons dared suspect until verified by the original numerical

algorithm. Our experience with the calculation of the three-dimensional

supersonic flow field is limited. But this limited experience seems to

confirm that reducing the isctach or lateral mesh size to small values gives

results that are indicative of an instability. At this juncture we can only

say that results of engineering interest are obtained in three-dimensional

flows, no doubt becausa the flows of interest are frequently those whose

behavior is generally smooth and locally analytic.

NAWr.T "C Trw

A novel and simple procedure for determining modifications that will

make a baseline configuration shock-free for supercritical flight conditions

has been delineated. For tap.-dimensional, inviscid flows, shock-free de-

signs are obtained in seconds on a CYBEEL 175. Families of airfoils that are

shock-frca at fixed, as wall as varying, flight conditions are found. The

same procedure has been applied to three- dimensional wings, resulting in

wing modifications that make the wings shock-free when the flow is analyzed

with the numerical algorithm that wa,i modified to become a design tool. It

can also be applied to the design of shock-free cascades. A unique feature

of the procedure is that any code that is effective in computing the flaw

field may be modified, in various ways, to be a design algorithm if it is

coupled with a method for calculating the solution in the supersonic

I domains for given data on the sonic surfaces. A straightforward marching

technique for such computations is described for three-dimensional flows;

in two dimensions either the marching procedure or the method of

Ire
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!chiractariatics may be used for the supersonic domain. The algorithm for

•	
I 

•	 the supersonic domain serves to definer the modifications needed in the

i

	

	 configuration to achieve shock--free flow; these modifications Will be
► I

j•	 limited to that portion of the design shape that are wetted by supersonic

l	 1 I	 flow.
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FIGURES

Figsr q 1.	 -tc'i of shark-free flow past a lifting wing depicting the
Rork au:fa(:s cbcainsd by inn _)oucing fictitious behavior
inside this su:.face that results in elliptic equations. The
correct flow in this supersonic domain is subsequently calcu-
lated using the initial data on the sonic surface. This
calculation provides the wing geometry modifications needed
to obtain shocx-free flow.

Figure 2. Sketch of two neighboring isotach surfaces used in the calcu-
lation of the supersonic domain for Equations (2).

Fig,.%re 3. Compariscu of the pressure coefficients and sonic lines for
the baseline NACA 54A410 and the shock-free air`_o it obtained
from it by the direct design procedure.

Figure 4. Parameter space explored for the shock-free airfoils that can
be obtained when the baseline configuration is an NACA 64A410
airfoil.

Fi:? ,ire 5. Comparison of the pressure coefficient and the sonic line
obtained by the design .:alculation that modifies the airfoil
shape with tb-ae obtained by computing the flow past the
modified airfoil with the numerical algorithm of Ref. 16.

Figure 6. Shock-free airfoil shapes for fixed lift coefficient and vary-
ing Mach number. The fictitious gas !..as a constant densi;.y in
the supersonic domain. The vertical scale is magnified five
times and the baseline airfoil is an IWA 64A410.

Figure 7. Shock-free airfoil shapes for fixed Mach number and varying
lift coefficient. The fictitious gas has a constant density in
the supersonic domain. The vertical scale is magnified five
times and the baseline airfoil is an NACA 64A410.

Figure 8. Shock-free airfoils obtained at the same flight crLA itious by
varying the exponent of Equation (lc) and thus changing the
dansity's dependence on flow speed. The vertical scale is mag-
nif ied five times and the baseline airfoil is an NACA 64A410.

Figure 9. Sonic surface for the shock-free rectangular wing obtained by
modifying a wing with a parabolic arc airfoil section, and the
pressure coefficients on the original and modified wing as
calculated by the numerical algorithm of Res. 19. The thickness
distribution of the baseline wing is parabolic.

Figure 10. Changes required in the surface slope at various lateral sta-
tions to provide shock-free flow over the rectangular wing of
Figure 9.

Figure 11. Sonic surface on the shock-free swept wing used that corresponds
to the design pressure coefficients shown in Figure 12.



•	 Figure 12. Comparison of the computed pressure coefficient on a s-aept wing,
with an NACA 64A410 center section profile and an elliptic
thickness distribution, w{.th the pressure coefficient obtained

k 	 by computing the flow past the modified wing using the same
numerical algorithm. The lending edge sweep is 30 DEC and the
trailing ed3e sweep i.5 DEG.
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